Material Requirements Planning (MRP)

Outline

DEPENDENT INVENTORY MODEL

 REQUIREMENTSMaster Production Schedule
Bills of Materials
Accurate Inventory records
Purchase Orders Outstanding
Lead Times for Each Component MRP STRUCTURE

Collins Industries

- Largest manufacturer of ambulances in the world
- International competitor
- 12 major ambulance designs
- 18,000 different inventory items
- 6,000 manufactured parts
- 12,000 purchased parts
- MRP: IBM's MAPICS

Collins Industries

- Collins requires:
- Material plan must meet both the requirements of the master schedule and the capabilities of the production facility
- Plan must be executed as designed
- Effective "time-phased" deliveries, consignments, and constant review of purchase methods
- Maintenance of record integrity

Material Requirements Planning (MRP)

- Manufacturing computer information system
- Determines quantity \& timing of dependent demand items

MRP: Types of Items

- Independent demand items; complete product ready for use

- Dependent demand items; sub-assemblies, components

MRP Requirements

- Computer system
- Mainly discrete products
- Accurate bill-of-material
- Accurate inventory status
- 99% inventory accuracy
- Stable lead times

MRP Benefits

- Increased customer satisfaction due to meeting delivery schedules
- Faster response to market changes
- Improved labor \& equipment utilization
- Better inventory planning \& scheduling
- Reduced inventory levels without reduced customer service

Structure of the MRP System

The Planning Process

Inputs to the Production Plan

MRP and The Production Planning Process

MRP INPUT DATA

MRP modeling requires that the operations manager know the:
master production schedule (MPS)
specifications or bills-of-material (BOM)
inventory availability
purchase orders outstanding
lead times

MRP Systems - Input and Output

Inventory Classifications

WHY INVENTORIES ARE CENTRAL?

- Purpose of any production system is creation of finished product right on time at right place in right quantity at low cost with best quality
- Inventories are finished products created earlier than their demand time

Dependent versus Independent Demand

Item	Materials With Independent Demand	Materials With Dependent Demand
Demand Source	Company Customers	Parent Items
Material Type	Finished Goods	WIP \& Raw Materials
Method of Estimating Demand	Forecast \& Booked	Customer Orders

Typical Focus of the Master Production Schedule

Aggregate Production Plan Leads to Master Production Schedule (MPS)

Months	January				February				
Aggregate Production Plan (shows the total quantity of amplifiers	1,500				1,200				
Weeks	1	2	3	4	5	6	7	8	
Master Production Schedule (Shows the specific type and quantity of amplifier to be produced									
240 watt amplifier	100		100		100		100		
150 watt amplifier		500		500		450		450	
75 watt amplifier			300				100		

Master Production Schedule

- Shows items to be produced
- End item, customer order, module
- Derived from aggregate plan

Example

Item/Week	Oct 3	Oct 10	Oct 17	Oct 24
Drills	300	200	310	300
Saws	300	450	310	330

Derivation of Master Schedule

A and S are End Items

B and C are used to make A
and S

Derivation of Master Schedule

Lead time $=4$ for A Master schedule for A

Lead time $=6$ for S
Master schedule for S

8	9	10	11	12	13
	40		20		30

sold directly

1	2	3
10	10	

A is required
Week 6: 40
8:50
11: 15
S is required
Week 9 : 40
11 : 20
$13: 13$

Derivation of Master Schedule

B Requirements

Bill-of-Material (BOM)

- List of components \& quantities needed to make product
- Provides product structure (tree)
- Parents: Items above given level
- Children: Items below given level
- Shows low-level coding
- Lowest level in structure item occurs
- Top level is 0 ; next level is 1 etc.

Bill-of-Material Product Structure Tree

Special Bills-of-Material

- Modular bills
- Modules are final components used to make assemble-tostock end items
- Planning bills
- Used to assign artificial parent
- Reduces number of items scheduled
- Phantom bills
- Used for subassemblies that exist temporarily

Product Structure for "Awesome" A

LEAD TIMES

Gross Material Requirements Plan for 50 "Awesome A" Speaker Kits

MRP TABLE STRUCTURE

WEEKS	1	2	3	4	5	6	7	8	9	10
GR										
SR										
OHI										
NR										
POT										
POR										

MRP Table Parameters

- $\operatorname{GR}(\mathrm{t})$: gross requirements total demand in a period t SR(t) :
expected receipt of the item in period t from previous (outstanding) orders
$\mathrm{OHI}(\mathrm{t})$: on-hand inventory at beginning of t
$\mathrm{NR}(\mathrm{t})$: net requirements ; $\mathrm{NR}(\mathrm{t})=\mathrm{GR}(\mathrm{t})-\mathrm{SR}(\mathrm{t})-\mathrm{OH}(\mathrm{t})$
POT(t): planned order receipts
POR(t): planned order release

MRP Table Calculations

$\mathrm{OH}(\mathrm{t})$: on-hand inventory

$$
\begin{aligned}
\mathrm{OHI}(\mathrm{t}) & =0 ; & \text { if GR }(\mathrm{t})-\{\mathrm{SR}(\mathrm{t})+\mathrm{OHI}(\mathrm{t})\}>0 \\
& =\{\mathrm{SR}(\mathrm{t})+\mathrm{OHI}(\mathrm{t})\}-\mathrm{GR}(\mathrm{t}) ; & \text { otherwise }
\end{aligned}
$$

MRP Table Calculations

- $N R(t)$: net requirements is expected shortage

$$
\begin{array}{rlr}
\mathrm{NR}(\mathrm{t})= & =0 ; \quad \text { if }\{\mathrm{SR}(\mathrm{t})+\mathrm{OHI}(\mathrm{t})\}-\mathrm{GR}(\mathrm{t})>0 \\
& =\mathrm{GR}(\mathrm{t})-\{\mathrm{SR}(\mathrm{t})+\mathrm{OHI}(\mathrm{t})\} ; & \text { otherwise }
\end{array}
$$

MRP Table Calculations

- POR(t) : planned order release
issue an order of manufacturing/buying according to $\mathrm{NR}(\mathrm{t}+\mathrm{L})$
where L = lead time of order replenishment

MRP Table Calculations

- POT(t) : planned order receipt
receiving the consignment as a result of POR made in period ($\mathrm{t}+\mathrm{L}$)

MRP CALCULATIONS

| | $\mathbf{1}$ | | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gross Requirements | 35 | 30 | 40 | 0 | 10 | 40 | 30 | |
| Scheduled Receipts | | | | | | | | |
| Projected on Hand | 35 | 35 | 0 | 0 | 0 | 0 | 0 | 0 |
| Net Requirements | 0 | 30 | 40 | 0 | 10 | 40 | 30 | |
| Planned Order Receipts | | 30 | 40 | | 10 | 40 | 30 | |
| Planned Order Releases | 30 | 40 | | 10 | 40 | 30 | | |

