Material Requirements Planning (MRP)

Outline

DEPENDENT INVENTORY MODEL REQUIREMENTS

Master Production Schedule

Bills of Materials

Accurate Inventory records

Purchase Orders Outstanding

Lead Times for Each Component

MRP STRUCTURE

Collins Industries

- Largest manufacturer of ambulances in the world
- International competitor
- 12 major ambulance designs
 - 18,000 different inventory items
 - 6,000 manufactured parts
 - 12,000 purchased parts
 - MRP: IBM's MAPICS

Collins Industries

Collins requires:

- Material plan must meet both the requirements of the master schedule and the capabilities of the production facility
- Plan must be executed as designed
- Effective "time-phased" deliveries, consignments, and constant review of purchase methods
- Maintenance of record integrity

Material Requirements Planning (MRP)

- Manufacturing computer information system
- Determines *quantity* & *timing* of dependent demand items

MRP: Types of Items

 Independent demand items; complete product ready for use

 Dependent demand items; sub-assemblies, components

MRP Requirements

Computer system
Mainly discrete products
Accurate bill-of-material
Accurate inventory status
99% inventory accuracy

Stable lead times

© 1984-1994 T/Maker Co.

MRP Benefits

- Increased customer satisfaction due to meeting delivery schedules
- Faster response to market changes
- Improved labor & equipment utilization
- Better inventory planning & scheduling
- Reduced inventory levels without reduced customer service

Structure of the MRP System

The Planning Process

Inputs to the Production Plan

MRP and The Production Planning Process

MRP INPUT DATA

MRP modeling requires that the operations manager know the:

master production schedule (MPS)

specifications or bills-of-material (BOM)

inventory availability

purchase orders outstanding

lead times

MRP Systems - Input and Output

Inventory Classifications

WHY INVENTORIES ARE CENTRAL?

- Purpose of any production system is creation of finished product right on time at right place in right quantity at low cost with best quality
- Inventories are finished products created earlier than their demand time

Dependent versus Independent Demand

ltem	Materials With Independent Demand	Materials With Dependent Demand		
Demand Source	Company Customers	Parent Items		
Material Type	Finished Goods	WP & Raw Materials		
Method of Estimating Demand	Forecast & Booked Customer Orders	Calculated		
Planning Method	EOQ & ROP	MRP		

Typical Focus of the Master Production Schedule

Aggregate Production Plan Leads to Master Production Schedule (MPS)

Months	January		February						
Aggregate Production Plan (shows the total quantity of amplifiers	1,500		1,200						
Weeks	1	2	3	4	5	6	7	8	
Master Production Schedule (Shows the specific type and quantity of amplifier to be produced									
240 watt amplifier	100		100		100		100		
150 watt amplifier		500		500		450		450	
75 watt amplifier			300				100		

Master Production Schedule

Shows items to be produced

• End item, customer order, module

Derived from aggregate plan

Example

Item/Week	Oct 3	Oct 10	Oct 17	Oct 24		
Drills	300	200	310	300		
Saws	300	450	310	330		

Derivation of Master Schedule

A and S are End Items

B and C are used to make A and S

Derivation of Master Schedule

A is required Week 6 : 40 8 : 50 11 : 15 S is required Week 9 : 40 11 : 20 13 : 13

Derivation of Master Schedule

B Requirements

Bill-of-Material (BOM)

- List of components & quantities needed to make product
- Provides product structure (tree)
 - Parents: Items above given level
 - Children: Items below given level
- Shows low-level coding
 - Lowest level in structure item occurs
 - Top level is 0; next level is 1 etc.

Bill-of-Material Product Structure Tree

Special Bills-of-Material

Modular bills

- Modules are final components used to make assemble-tostock end items
- Planning bills
 - Used to assign artificial parent
 - Reduces number of items scheduled
- Phantom bills
 - Used for subassemblies that exist temporarily

LEAD TIMES

Gross Material Requirements Plan for 50 "Awesome A" Speaker Kits

	Week								
	1	2	3	4	5	6	7	8	LEAD TIME
A. Required date Order release date							50	50	1 week
B. Required date Order release date					100		100		2 weeks
C. Required date Order release date						150	150		1 week
D. Required date Order release date				200	200				1 week
E. Required date Order release date			200	300	200	300			2 weeks
F. Required date Order release date			300			300			3 weeks
D. Required date Order release date		600	600						1 week
G. Required date Order release date	300		300						2 weeks

You can interpret the gross material requirements shown in Table 14.3 as follows: If you want 50 units of A at week 8, you must start assembling A in week 7. Thus, in week 7, you will need 100 units of B and 150 units of C. These two items take 2 weeks and 1 week, respectively, to produce. Production of B, therefore, should start in week 5, and production of C should start in week 6 (lead time subtracted from the required date for these items). Working backward, we can perform the same computations for all of the other items. The material requirements plan shows when production of each item should begin and end in order to have 50 units of A at week 8.

MRP TABLE STRUCTURE

WEEKS	1	2	3	4	5	6	7	8	9	10
GR										
SR										
OHI										
NR										
POT										
POR										

MRP Table Parameters

 GR(t) : gross requirements total demand in a period t **SR(t)** : expected receipt of the item in period t from previous (outstanding) orders OHI(t): on-hand inventory at beginning of t NR (t) : net requirements ; NR(t) = GR(t)-SR(t)-OHI(t) POT(t): planned order receipts POR(t): planned order release

OHI(t) : on-hand inventory

 $OHI(t) = 0; if GR(t)-\{SR(t)+OHI(t)\} > 0$ $= \{SR(t)+OHI(t)\} - GR(t); otherwise$

NR(t) : net requirements is expected shortage

 $\label{eq:NR(t) = 0;} \qquad \mbox{if } \{SR(t) + OHI(t)\} - GR(t) > 0 \\ = GR(t) - \{SR(t) + OHI(t)\}; \qquad \mbox{otherwise}$

POR(t) : planned order release
 issue an order of manufacturing/buying
 according to NR(t+L)

where L = lead time of order replenishment

 POT(t) : planned order receipt receiving the consignment as a result of POR made in period (t+L)

MRP CALCULATIONS

-		1	2	3	4	5	6	7
Gross Requirements		35	30	40	0	10	40	30
Scheduled Receipts								
Projected on Hand	35	35	0	0	0	0	0	0
Net Requirements		0	30	40	0	10	40	30
Planned Order Receipts			30	40		10	40	30
Planned Order Releases			40		10	40	30	